RIARTE Home
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   RIARTE Home
  • 2. INVESTIGACIÓN CIENTÍFICA
  • Artículos en revistas científicas
  • View Item
  •   RIARTE Home
  • 2. INVESTIGACIÓN CIENTÍFICA
  • Artículos en revistas científicas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Open parallelogrammic enclosures to improve Trombe wall performance by enhancing free convection. An experimental approach

Identifiers
URI: http://hdl.handle.net/20.500.12251/1965
View/Open: https://doi.org/10.1080/08916152.2020.1772411
ISSN: 08916152
DOI: 10.1080/08916152.2020.1772411
Share
Statistics
View Usage Statistics
Metadata
Show full item record
Author
Baïri, Abderrahmane; Martín Garín, Alexánder
Date
2020
Subject/s

Transferencia de calor por convección

Muro Trombe

Aislamiento térmico

Comportamiento térmico

Envolvente de edificio

Ensayos (propiedades o materiales)

Conductividad térmica

Transmisión de calor en edificación

Ahorro energético

Simulación energética - herramientas

Unesco Subject/s

2211.29 Propiedades Térmicas de Los Sólidos

2213.10 Relaciones Termodinámicas

3311.16 Instrumentos de Medida de la Temperatura

3312.08 Propiedades de Los Materiales

3312.12 Ensayo de Materiales

3322.04 Transmisión de Energía

2501.21 Simulación Numérica

Abstract

A version improving the efficiency of the Trombe-type assembly is proposed in this study. It consists in equipping the wall with a series of inclined fins forming open cavities of parallelogram section affecting the aerodynamics of the active cavity. The natural convective flow leads to an increase in natural convective heat transfer and improves the overall performance of the assembly. The experimental study is performed with a 0.2 scale assembly. The wall generates a heat flux in a wide range corresponding to the solar radiation while the glass cover is maintained isothermal at cold temperature. The distance between the hot and cold walls compared to the height of the cavity leads to three aspect ratio values (0.1, 0.2 and 0.3). The study performed for a Rayleigh number ranging from 2.81 × 108 to 4.14 × 109 confirms the effectiveness of the new version proposed in this work. With the finned wall, the average natural convective heat transfer increases from 7 to 23% compared to the conventional version without fins, according to the considered configuration. The average Nusselt number is determined for all the tested configurations with a maximum uncertainty of 5%, taking into account the uncertainties of the measured physical parameters. A Nusselt-Rayleigh type correlation is proposed, obtained by means of the least squares optimization method. © 2020, © 2020 Taylor & Francis.

A version improving the efficiency of the Trombe-type assembly is proposed in this study. It consists in equipping the wall with a series of inclined fins forming open cavities of parallelogram section affecting the aerodynamics of the active cavity. The natural convective flow leads to an increase in natural convective heat transfer and improves the overall performance of the assembly. The experimental study is performed with a 0.2 scale assembly. The wall generates a heat flux in a wide range corresponding to the solar radiation while the glass cover is maintained isothermal at cold temperature. The distance between the hot and cold walls compared to the height of the cavity leads to three aspect ratio values (0.1, 0.2 and 0.3). The study performed for a Rayleigh number ranging from 2.81 × 108 to 4.14 × 109 confirms the effectiveness of the new version proposed in this work. With the finned wall, the average natural convective heat transfer increases from 7 to 23% compared to the conventional version without fins, according to the considered configuration. The average Nusselt number is determined for all the tested configurations with a maximum uncertainty of 5%, taking into account the uncertainties of the measured physical parameters. A Nusselt-Rayleigh type correlation is proposed, obtained by means of the least squares optimization method. © 2020, © 2020 Taylor & Francis.

Collections
  • Artículos en revistas científicas

Browse

All of RIARTECommunities and CollectionsAuthorsTitlesSubjectsUnesco subjectsTypes of documentsThis CollectionAuthorsTitlesSubjectsUnesco subjectsTypes of documents

My Account

LoginRegister

Statistics

View Usage Statistics

Help

About RIARTEFAQLocate informationPoliciesPolítica de Protección de Datos

OA Publishing Policies

Logo SHERPA/RoMEOLogo Dulcinea

Content diffusion

Logo RecolectaLogo Hispana

Copyright © Spanish General Council of Technical Architecture 2018 | Legal notice | Política de Protección de Datos

Facebook
Twitter
Contact Us Send Feedback