dc.contributor.author | Bienvenido Huertas, David | |
dc.contributor.author | Rubio Bellido, Carlos | |
dc.date.accessioned | 2022-11-25T07:02:29Z | |
dc.date.available | 2022-11-25T07:02:29Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Bienvenido-Huertas, D., Rubio-Bellido, C. (2021). Methodological Framework of Artificial Intelligence Algorithms and Generation of the Dataset. In: Optimization of the Characterization of the Thermal Properties of the Building Envelope. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-63629-6_3 | es |
dc.identifier.isbn | 2191530X | |
dc.identifier.uri | http://hdl.handle.net/20.500.12251/2705 | |
dc.description.abstract | The analysis of the state-of-the-art methods to characterize thermal properties has shown the importance of the theoretical methods (both of stationary and periodic properties) and the difficulty to characterize the existing buildings correctly. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG. | es |
dc.language.iso | eng | es |
dc.publisher | Springer Science and Business Media Deutschland GmbH | es |
dc.title | Methodological Framework of Artificial Intelligence Algorithms and Generation of the Dataset | es |
dc.type | bookPart | es |
dc.identifier.doi | 10.1007/978-3-030-63629-6_3 | |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096526743&doi=10.1007%2f978-3-030-63629-6_3&partnerID=40&md5=1180c54adae2be2ff061c5977cd03d4a | es |
dc.issue.number | | es |
dc.page.initial | 31 | es |
dc.page.final | 45 | es |
dc.subject.keyword | Envolvente de edificio | es |
dc.subject.keyword | Propiedades térmicas | es |
dc.subject.keyword | Rendimiento energético | es |
dc.subject.keyword | Normativa construcción | es |
dc.subject.unesco | 3305.14 Viviendas | es |
dc.subject.unesco | 3305.90 Transmisión de Calor en la Edificación | es |
dc.subject.unesco | 3311.02 Ingeniería de Control | es |
dc.volume.number | | es |