RIARTE Home
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   RIARTE Home
  • 2. INVESTIGACIÓN CIENTÍFICA
  • Capítulos de libros científicos
  • View Item
  •   RIARTE Home
  • 2. INVESTIGACIÓN CIENTÍFICA
  • Capítulos de libros científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sustainable Polyurethane Plasterboard for Construction

Identifiers
URI: http://hdl.handle.net/20.500.12251/2707
View/Open: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111899020&doi=10.1007%2f978-3-030-76543-9_25&partnerID=40&md5=1210a90096ef592aeea4ebf34d81d7b0
ISBN: 22110844
DOI: 10.1007/978-3-030-76543-9_25
Share
Statistics
View Usage Statistics
Metadata
Show full item record
Author
Miguel, V.; Junco Petrement, Carlos; Gutiérrez, S.; Alameda Cuenca-Romero, Lourdes; Rodrigo, A. [et al.]
Date
2021
Subject/s

Rendimiento energético

Envolvente de edificio

Sostenibilidad

Medio ambiente

Unesco Subject/s

3305.01 Diseño Arquitectónico

3305.90 Transmisión de Calor en la Edificación

3311.02 Ingeniería de Control

Abstract

The introduction of polyurethane waste from the production of cars into gypsum plasterboards in its matrix is studied. This new plasterboard is compared to commercial gypsum plasterboard; therefore, the doses and the uses of both materials are the same. The prefabricated material is entirely characterized under the Standard EN 520:2005+A1 by the following tests: bulk density, maximum breaking load under flexion stress, total water absorption and surface hardness. The results indicate that the use of polyurethane waste makes the plasterboard lighter as the density of the polyurethane is lower than the gypsum one. The water absorption increased when the amount of residue increased. The lower density leads to a higher porosity, what permits a higher absorption of water and much better thermal isolation. It also reduces its mechanical performance while preventing the board from breaking since only small cracks appear. Besides, the elastic properties of the polyurethane make the surface hardness decrease. With respect to mechanical properties, plasterboard is susceptible to the mechanical impact damage. Although the flexural strength of the plaster specimens decrease as the amount of the waste increase, it remains within the minimum reference value required by standard. Non-combustibility test is determinate on the basis of experimental data obtained according to Standard EN 13501-1. Turning waste into a resource is one key to a circular economy, the employ of this polyurethane waste for the fabrication of plasterboards could contribute to maximize the reuse of this kind of waste. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

The introduction of polyurethane waste from the production of cars into gypsum plasterboards in its matrix is studied. This new plasterboard is compared to commercial gypsum plasterboard; therefore, the doses and the uses of both materials are the same. The prefabricated material is entirely characterized under the Standard EN 520:2005+A1 by the following tests: bulk density, maximum breaking load under flexion stress, total water absorption and surface hardness. The results indicate that the use of polyurethane waste makes the plasterboard lighter as the density of the polyurethane is lower than the gypsum one. The water absorption increased when the amount of residue increased. The lower density leads to a higher porosity, what permits a higher absorption of water and much better thermal isolation. It also reduces its mechanical performance while preventing the board from breaking since only small cracks appear. Besides, the elastic properties of the polyurethane make the surface hardness decrease. With respect to mechanical properties, plasterboard is susceptible to the mechanical impact damage. Although the flexural strength of the plaster specimens decrease as the amount of the waste increase, it remains within the minimum reference value required by standard. Non-combustibility test is determinate on the basis of experimental data obtained according to Standard EN 13501-1. Turning waste into a resource is one key to a circular economy, the employ of this polyurethane waste for the fabrication of plasterboards could contribute to maximize the reuse of this kind of waste. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Collections
  • Capítulos de libros científicos

Browse

All of RIARTECommunities and CollectionsAuthorsTitlesSubjectsUnesco subjectsTypes of documentsThis CollectionAuthorsTitlesSubjectsUnesco subjectsTypes of documents

My Account

LoginRegister

Statistics

View Usage Statistics

Help

About RIARTEFAQLocate informationPoliciesPolítica de Protección de Datos

OA Publishing Policies

Logo SHERPA/RoMEOLogo Dulcinea

Content diffusion

Logo RecolectaLogo Hispana

Copyright © Spanish General Council of Technical Architecture 2018 | Legal notice | Política de Protección de Datos

Facebook
Twitter
Contact Us Send Feedback