Bending, shearing, and compression properties of fast growing French Douglas fir LVL
Metadata
Show full item recordAuthor
Date
2021Subject/s
Abstract
The French resource of large diameter Douglas fir is currently keeping growing, while these large diameter trees are complicated to process efficiently by the sawmilling industry. The rotary peeling process appeared to be particularly adapted as an alternative to the usual sawing. This primary processing method produces veneers used to make a wood engineering product material called Laminated Veneer Lumber (LVL). The manufacturing process of LVL enables the distribution of the resource defects, allowing for increased mechanical behaviour compared to the solid wood from which it comes from. The main objective of this study is to present the principal Douglas-fir heartwood LVL mechanical properties such as longitudinal and shear moduli of elasticity, bending, shear and compressive strengths. Up to now, there were no study on LVL derived from this resource. This study focuses on heartwood because of its very interesting natural durability properties for constructive outdoor applications. Moreover, a comparison with structural timber properties was also achieved to place the material in terms of mechanical performance among the market. Globally, this LVL material showed high compressive and shear properties. Nevertheless, even though the bending properties were significantly lower than data from Douglas-fir LVL literature, they are still quite acceptable for structural applications. © WCTE 2021. All rights reserved.
The French resource of large diameter Douglas fir is currently keeping growing, while these large diameter trees are complicated to process efficiently by the sawmilling industry. The rotary peeling process appeared to be particularly adapted as an alternative to the usual sawing. This primary processing method produces veneers used to make a wood engineering product material called Laminated Veneer Lumber (LVL). The manufacturing process of LVL enables the distribution of the resource defects, allowing for increased mechanical behaviour compared to the solid wood from which it comes from. The main objective of this study is to present the principal Douglas-fir heartwood LVL mechanical properties such as longitudinal and shear moduli of elasticity, bending, shear and compressive strengths. Up to now, there were no study on LVL derived from this resource. This study focuses on heartwood because of its very interesting natural durability properties for constructive outdoor applications. Moreover, a comparison with structural timber properties was also achieved to place the material in terms of mechanical performance among the market. Globally, this LVL material showed high compressive and shear properties. Nevertheless, even though the bending properties were significantly lower than data from Douglas-fir LVL literature, they are still quite acceptable for structural applications. © WCTE 2021. All rights reserved.