RIARTE Home
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   RIARTE Home
  • 2. INVESTIGACIÓN CIENTÍFICA
  • Artículos en revistas científicas
  • View Item
  •   RIARTE Home
  • 2. INVESTIGACIÓN CIENTÍFICA
  • Artículos en revistas científicas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The evapotranspiration process in green roofs: A review

Identifiers
URI: http://hdl.handle.net/20.500.12251/1521
ISSN: 3601323
DOI: 10.1016/j.buildenv.2018.10.024
Share
Statistics
View Usage Statistics
Metadata
Show full item record
Author
Cascone, Stefano; Coma Arpón, Julià; Gagliano, Antonio; Pérez Luque, Gabriel
Date
2019
Subject/s

Techos verdes

Evotranspiración

Ensayos (propiedades o materiales)

Calor latente

Calorimetría

Tejados

Calefacción

Unesco Subject/s

3313.04 Material de Construcción

3305.90 Transmisión de Calor en la Edificación

3312.12 Ensayo de Materiales

3305.90 Transmisión de Calor en la Edificación

3322.04 Transmisión de Energía

Abstract

Previous research has shown that most of the green roof benefits are related to the cooling effect. In the literature available, however, it is still not clear how and how much the evapotranspiration affects the performance of a green roof. In order to fill the gap in this research topic, this study carries out a review on the cooling effect due to the evapotranspiration process of green roofs. First of all, an overview of the evapotranspiration phenomenon in green roofs, as well as the equipment and methods used for its measurement are presented. Then, the main experimental results available in literature, the physical-mathematical models and the dynamic simulation software used for the evaluation of the latent heat flux are also analysed and discussed among the available literature. Moreover, this review proposes a classification of the results carried out by previous studies as function of the main parameters affecting the evapotranspiration process (e.g. volumetric water content, stomatal resistance, Leaf Area Index, solar radiation, wind velocity, relative humidity, soil thickness, and substrate composition). Additionally, a sensitivity analysis of the results obtained from the literature allowed underlining the correlation among the main factors affecting the evapotranspiration. Finally, a vision of the world area where green roof studies were performed is provided. From the results, it is possible to emphasize that most of the studies that evaluated the evapotranspiration used high precision load cells. Furthermore, all the heat transfer models of green roofs considered in this review took into account the latent heat flux due to evaporation of water from the substrate and plants transpiration, however, only few of them were experimentally validated. © 2018 Elsevier Ltd

Previous research has shown that most of the green roof benefits are related to the cooling effect. In the literature available, however, it is still not clear how and how much the evapotranspiration affects the performance of a green roof. In order to fill the gap in this research topic, this study carries out a review on the cooling effect due to the evapotranspiration process of green roofs. First of all, an overview of the evapotranspiration phenomenon in green roofs, as well as the equipment and methods used for its measurement are presented. Then, the main experimental results available in literature, the physical-mathematical models and the dynamic simulation software used for the evaluation of the latent heat flux are also analysed and discussed among the available literature. Moreover, this review proposes a classification of the results carried out by previous studies as function of the main parameters affecting the evapotranspiration process (e.g. volumetric water content, stomatal resistance, Leaf Area Index, solar radiation, wind velocity, relative humidity, soil thickness, and substrate composition). Additionally, a sensitivity analysis of the results obtained from the literature allowed underlining the correlation among the main factors affecting the evapotranspiration. Finally, a vision of the world area where green roof studies were performed is provided. From the results, it is possible to emphasize that most of the studies that evaluated the evapotranspiration used high precision load cells. Furthermore, all the heat transfer models of green roofs considered in this review took into account the latent heat flux due to evaporation of water from the substrate and plants transpiration, however, only few of them were experimentally validated. © 2018 Elsevier Ltd

Collections
  • Artículos en revistas científicas

Browse

All of RIARTECommunities and CollectionsAuthorsTitlesSubjectsUnesco subjectsTypes of documentsThis CollectionAuthorsTitlesSubjectsUnesco subjectsTypes of documents

My Account

LoginRegister

Statistics

View Usage Statistics

Help

About RIARTEFAQLocate informationPoliciesPolítica de Protección de Datos

OA Publishing Policies

Logo SHERPA/RoMEOLogo Dulcinea

Content diffusion

Logo RecolectaLogo Hispana

Copyright © Spanish General Council of Technical Architecture 2018 | Legal notice | Política de Protección de Datos

Facebook
Twitter
Contact Us Send Feedback