RIARTE Home
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   RIARTE Home
  • 2. INVESTIGACIÓN CIENTÍFICA
  • Artículos en revistas científicas
  • View Item
  •   RIARTE Home
  • 2. INVESTIGACIÓN CIENTÍFICA
  • Artículos en revistas científicas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Environmental evaluation of a self-compacted clay based concrete with natural superplasticizers

Identifiers
URI: http://hdl.handle.net/20.500.12251/2563
View/Open: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099378300&doi=10.1617%2fs11527-020-01586-6&partnerID=40&md5=9d784c98b8bae817bf3d529ceb347e80
ISSN: 13595997
DOI: 10.1617/s11527-020-01586-6
Share
Statistics
View Usage Statistics
Metadata
Show full item record
Author
Romero Clausell, Joan; Quintana Gallardo, A.; Hidalgo Signes, C.; Serrano Lanzarote, B.
Date
2021
Subject/s

Evaluación ambiental

Hormigón

Arcilla

Losa de hormigón armado

Material de construcción

Ensayos (propiedades o materiales)

Resistencia mecánica

Impacto medioambiental

Unesco Subject/s

3305.05 Tecnología del Hormigón

3313.04 Material de Construcción

3312.05 Productos de Arcilla

3312.12 Ensayo de Materiales

3312.08 Propiedades de Los Materiales

3312.09 Resistencia de Materiales

Abstract

Cement concrete is the most widely used construction material worldwide due to its favourable mechanical characteristics. However, it is responsible for 8% of the total carbon emissions in the world, which are generated mainly during the production of clinker. Due to that fact, finding alternatives to cement for some applications in which it is not strictly needed should be a priority. In this study, a self-compacted clay-based concrete with natural superplasticizers based on natural tara tannins is presented. The main objective of the study is to determine if this clay-based concrete can be a sustainable alternative to conventional cement concrete as the main component in structural slabs. The methodology of the study is divided into two parts. First, the self-compacting clay concrete is characterized to determine its mechanical properties. Secondly, a comparative Life Cycle Assessment is conducted to determine the difference between the impacts generated by one square meter of self-compacting cement concrete and one of self-compacting clay concrete. The characterization of the material showed that this self-compacting clay concrete is suitable for some building elements such as structural slabs while avoiding the energy consumption needed to produce conventional concrete. The environmental impact results showed that using self-compacting clay concrete instead of the cement-based material decreases 90% of the carbon emissions and 80% of the overall environmental impact. After the completion of the study, it can be stated that the presented material is a sustainable alternative to conventional concrete for building structural slabs. © 2021, RILEM.

Cement concrete is the most widely used construction material worldwide due to its favourable mechanical characteristics. However, it is responsible for 8% of the total carbon emissions in the world, which are generated mainly during the production of clinker. Due to that fact, finding alternatives to cement for some applications in which it is not strictly needed should be a priority. In this study, a self-compacted clay-based concrete with natural superplasticizers based on natural tara tannins is presented. The main objective of the study is to determine if this clay-based concrete can be a sustainable alternative to conventional cement concrete as the main component in structural slabs. The methodology of the study is divided into two parts. First, the self-compacting clay concrete is characterized to determine its mechanical properties. Secondly, a comparative Life Cycle Assessment is conducted to determine the difference between the impacts generated by one square meter of self-compacting cement concrete and one of self-compacting clay concrete. The characterization of the material showed that this self-compacting clay concrete is suitable for some building elements such as structural slabs while avoiding the energy consumption needed to produce conventional concrete. The environmental impact results showed that using self-compacting clay concrete instead of the cement-based material decreases 90% of the carbon emissions and 80% of the overall environmental impact. After the completion of the study, it can be stated that the presented material is a sustainable alternative to conventional concrete for building structural slabs. © 2021, RILEM.

Collections
  • Artículos en revistas científicas

Browse

All of RIARTECommunities and CollectionsAuthorsTitlesSubjectsUnesco subjectsTypes of documentsThis CollectionAuthorsTitlesSubjectsUnesco subjectsTypes of documents

My Account

LoginRegister

Statistics

View Usage Statistics

Help

About RIARTEFAQLocate informationPoliciesPolítica de Protección de Datos

OA Publishing Policies

Logo SHERPA/RoMEOLogo Dulcinea

Content diffusion

Logo RecolectaLogo Hispana

Copyright © Spanish General Council of Technical Architecture 2018 | Legal notice | Política de Protección de Datos

Facebook
Twitter
Contact Us Send Feedback